(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
merge(nil, y) → y
merge(x, nil) → x
merge(.(x, y), .(u, v)) → if(<(x, u), .(x, merge(y, .(u, v))), .(u, merge(.(x, y), v)))
++(nil, y) → y
++(.(x, y), z) → .(x, ++(y, z))
if(true, x, y) → x
if(false, x, y) → x
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
merge(.(x, y), .(u, v)) →+ if(<(x, u), .(x, merge(y, .(u, v))), .(u, merge(.(x, y), v)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1].
The pumping substitution is [y / .(x, y)].
The result substitution is [ ].
The rewrite sequence
merge(.(x, y), .(u, v)) →+ if(<(x, u), .(x, merge(y, .(u, v))), .(u, merge(.(x, y), v)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [2,1].
The pumping substitution is [v / .(u, v)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
merge(nil, y) → y
merge(x, nil) → x
merge(.(x, y), .(u, v)) → if(<(x, u), .(x, merge(y, .(u, v))), .(u, merge(.(x, y), v)))
++(nil, y) → y
++(.(x, y), z) → .(x, ++(y, z))
if(true, x, y) → x
if(false, x, y) → x
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
merge(nil, y) → y
merge(x, nil) → x
merge(.(x, y), .(u, v)) → if(<(x, u), .(x, merge(y, .(u, v))), .(u, merge(.(x, y), v)))
++(nil, y) → y
++(.(x, y), z) → .(x, ++(y, z))
if(true, x, y) → x
if(false, x, y) → x
Types:
merge :: nil:. → nil:. → nil:.
nil :: nil:.
. :: a → nil:. → nil:.
if :: <:true:false → nil:. → nil:. → nil:.
< :: a → a → <:true:false
++ :: nil:. → nil:. → nil:.
true :: <:true:false
false :: <:true:false
hole_nil:.1_0 :: nil:.
hole_a2_0 :: a
hole_<:true:false3_0 :: <:true:false
gen_nil:.4_0 :: Nat → nil:.
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
merge, ++
(8) Obligation:
TRS:
Rules:
merge(
nil,
y) →
ymerge(
x,
nil) →
xmerge(
.(
x,
y),
.(
u,
v)) →
if(
<(
x,
u),
.(
x,
merge(
y,
.(
u,
v))),
.(
u,
merge(
.(
x,
y),
v)))
++(
nil,
y) →
y++(
.(
x,
y),
z) →
.(
x,
++(
y,
z))
if(
true,
x,
y) →
xif(
false,
x,
y) →
xTypes:
merge :: nil:. → nil:. → nil:.
nil :: nil:.
. :: a → nil:. → nil:.
if :: <:true:false → nil:. → nil:. → nil:.
< :: a → a → <:true:false
++ :: nil:. → nil:. → nil:.
true :: <:true:false
false :: <:true:false
hole_nil:.1_0 :: nil:.
hole_a2_0 :: a
hole_<:true:false3_0 :: <:true:false
gen_nil:.4_0 :: Nat → nil:.
Generator Equations:
gen_nil:.4_0(0) ⇔ nil
gen_nil:.4_0(+(x, 1)) ⇔ .(hole_a2_0, gen_nil:.4_0(x))
The following defined symbols remain to be analysed:
merge, ++
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol merge.
(10) Obligation:
TRS:
Rules:
merge(
nil,
y) →
ymerge(
x,
nil) →
xmerge(
.(
x,
y),
.(
u,
v)) →
if(
<(
x,
u),
.(
x,
merge(
y,
.(
u,
v))),
.(
u,
merge(
.(
x,
y),
v)))
++(
nil,
y) →
y++(
.(
x,
y),
z) →
.(
x,
++(
y,
z))
if(
true,
x,
y) →
xif(
false,
x,
y) →
xTypes:
merge :: nil:. → nil:. → nil:.
nil :: nil:.
. :: a → nil:. → nil:.
if :: <:true:false → nil:. → nil:. → nil:.
< :: a → a → <:true:false
++ :: nil:. → nil:. → nil:.
true :: <:true:false
false :: <:true:false
hole_nil:.1_0 :: nil:.
hole_a2_0 :: a
hole_<:true:false3_0 :: <:true:false
gen_nil:.4_0 :: Nat → nil:.
Generator Equations:
gen_nil:.4_0(0) ⇔ nil
gen_nil:.4_0(+(x, 1)) ⇔ .(hole_a2_0, gen_nil:.4_0(x))
The following defined symbols remain to be analysed:
++
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
++(
gen_nil:.4_0(
n12126_0),
gen_nil:.4_0(
b)) →
gen_nil:.4_0(
+(
n12126_0,
b)), rt ∈ Ω(1 + n12126
0)
Induction Base:
++(gen_nil:.4_0(0), gen_nil:.4_0(b)) →RΩ(1)
gen_nil:.4_0(b)
Induction Step:
++(gen_nil:.4_0(+(n12126_0, 1)), gen_nil:.4_0(b)) →RΩ(1)
.(hole_a2_0, ++(gen_nil:.4_0(n12126_0), gen_nil:.4_0(b))) →IH
.(hole_a2_0, gen_nil:.4_0(+(b, c12127_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
merge(
nil,
y) →
ymerge(
x,
nil) →
xmerge(
.(
x,
y),
.(
u,
v)) →
if(
<(
x,
u),
.(
x,
merge(
y,
.(
u,
v))),
.(
u,
merge(
.(
x,
y),
v)))
++(
nil,
y) →
y++(
.(
x,
y),
z) →
.(
x,
++(
y,
z))
if(
true,
x,
y) →
xif(
false,
x,
y) →
xTypes:
merge :: nil:. → nil:. → nil:.
nil :: nil:.
. :: a → nil:. → nil:.
if :: <:true:false → nil:. → nil:. → nil:.
< :: a → a → <:true:false
++ :: nil:. → nil:. → nil:.
true :: <:true:false
false :: <:true:false
hole_nil:.1_0 :: nil:.
hole_a2_0 :: a
hole_<:true:false3_0 :: <:true:false
gen_nil:.4_0 :: Nat → nil:.
Lemmas:
++(gen_nil:.4_0(n12126_0), gen_nil:.4_0(b)) → gen_nil:.4_0(+(n12126_0, b)), rt ∈ Ω(1 + n121260)
Generator Equations:
gen_nil:.4_0(0) ⇔ nil
gen_nil:.4_0(+(x, 1)) ⇔ .(hole_a2_0, gen_nil:.4_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
++(gen_nil:.4_0(n12126_0), gen_nil:.4_0(b)) → gen_nil:.4_0(+(n12126_0, b)), rt ∈ Ω(1 + n121260)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
merge(
nil,
y) →
ymerge(
x,
nil) →
xmerge(
.(
x,
y),
.(
u,
v)) →
if(
<(
x,
u),
.(
x,
merge(
y,
.(
u,
v))),
.(
u,
merge(
.(
x,
y),
v)))
++(
nil,
y) →
y++(
.(
x,
y),
z) →
.(
x,
++(
y,
z))
if(
true,
x,
y) →
xif(
false,
x,
y) →
xTypes:
merge :: nil:. → nil:. → nil:.
nil :: nil:.
. :: a → nil:. → nil:.
if :: <:true:false → nil:. → nil:. → nil:.
< :: a → a → <:true:false
++ :: nil:. → nil:. → nil:.
true :: <:true:false
false :: <:true:false
hole_nil:.1_0 :: nil:.
hole_a2_0 :: a
hole_<:true:false3_0 :: <:true:false
gen_nil:.4_0 :: Nat → nil:.
Lemmas:
++(gen_nil:.4_0(n12126_0), gen_nil:.4_0(b)) → gen_nil:.4_0(+(n12126_0, b)), rt ∈ Ω(1 + n121260)
Generator Equations:
gen_nil:.4_0(0) ⇔ nil
gen_nil:.4_0(+(x, 1)) ⇔ .(hole_a2_0, gen_nil:.4_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
++(gen_nil:.4_0(n12126_0), gen_nil:.4_0(b)) → gen_nil:.4_0(+(n12126_0, b)), rt ∈ Ω(1 + n121260)
(18) BOUNDS(n^1, INF)